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Among the model order reduction techniques, the Proper Generalized Decomposition (PGD) has shown its efficiency to solve static 

and quasistatic problems in the time domain. However, the introduction of nonlinearity due for example to ferromagnetic material has 

never been addressed. In this communication, the PGD technique combined with the Discrete Empirical Interpolation Method is 

applied to solve a non-linear problem in magnetostatic coupled with the circuit equations.  
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I. INTRODUCTION 

o reduce the computation time of time-dependent 

numerical models, Model Order Reduction (MOR) 

methods have been developed and presented in the 

literature. These methods consist in searching a solution in a 

subspace of the approximation space of the full numerical 

model. They have been mainly used to solve problems in 

mechanics. In this context, the Proper Generalized 

Decomposition (PGD) method has been developed since the 

early 2000’s and is more and more applied. In the case of 

systems of partial differential equations in the time domain, 

the PGD method consists to approximate the solution by a 

sum of functions separable in time and space [1][2][3], so-

called modes. Each mode is determined by an iterative 

procedure and depends on the previous modes. In the case of 

non-linear problems, the MOR methods are not so efficient 

than in the linear case, due to the computation cost of the non-

linear terms. In fact, the calculation of the non-linear matrices 

of the reduced model requires the calculation of the non-linear 

matrices of the full model. To circumvent this issue, the 

Discrete Empirical Interpolation Method (DEIM) method can 

be used [4]. This method consists in interpolating the non-

linear matrices of the full model by calculating only some of 

their entries. In the literature, the PGD approach has been 

combined with the DEIM in order to solve a thermal problem 

with a quadratic nonlinearity [5] but until now only linear 

problems have been solved with the PGD in computational 

electromagnetics [3]. 

In this communication, the PGD-DEIM approach is applied 

to solve a non-linear magnetostatic problem coupled with an 

external electric circuit using the vector potential formulation. 

The non-linearity of the ferromagnetic material is taken into 

account. A single phase transformer is studied with the 

proposed technique. The results obtained with the reduced 

model are compared in terms of accuracy and computation 

time with the full model. 

II. PGD-DEIM MODEL OF NON-LINEAR MAGNETOSTATIC 

PROBLEM COUPLED WITH ELECTRIC CIRCUIT 

To solve the magnetostatic problem, the vector potential A 

is used, B(x,t)=curlA(x,t). To take into account the non-linear 

behavior of the ferromagnetic material, the magnetic field  

 

H(x,t) can be expressed under the form 

H(x,t)=νfpB(x,t)+Hfp(B(x,t)) with νfp an arbitrary  constant and  

Hfp(B(x,t)) a virtual magnetisation. Then, the equations to 

solve on D×[0,T] when accounting for the circuit coupling are 
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with N, v(t), i(t) and R the unit current density vector, the 

voltage, the current and the resistance associated with a 

stranded inductor. To solve (1) and (2), the PGD approach can 

be used. The vector potential A is then approximated by a 

separated representation of space and time functions,  
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with x∈D, t∈[0,T]. To compute the functions Rn(x), Sn(t) and 

i(t), an iterative procedure is used. At the n
th

 iteration, the 

solution is An(x,t) = Rn(x)Sn(t) + An-1(x,t) with Rn(x) and Sn(t) 

the unknown functions. The current i(t) is recalculated at each 

iteration. To calculate Rn(x), Sn(t) and i(t), two sets of 

equations deduced from weak forms (1) and (2), are solved 

iteratively [3].  First, we suppose that Sn(t) and i(t) are known. 

According to (1), it can be shown that the function Rn(x) is the 

solution of the following equation 
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with AS a constant term depending on Sn(t), FSi and FR on 

(Sn(t), i(t)) and the previous mode An-1 and HRNL the non-

linear term. Secondly, to compute Sn(t) and i(t), we assume 

that the function Rn(x) is known.  According to (1) and (2), 

Sn(t) and i(t) are the solutions of the following equations  
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with AR and CR terms depending on Rn(x), FS and Fi 

depending on the previous mode An-1 and the voltage v(t) and 

HSNL the non-linear term. These two steps are repeated until 

convergence of the functions Rn(x), Sn(t) and i(t). To reduce 

the computation time of PGD approximation, two methods has 

been used. The first method is the DEIM which allows to 

reduce the computation cost of the non-linear terms HRNL and 

HSNL [4][5][6]. After each computation of the functions Rn(x) 

and Sn(t), the DEIM algorithm selects a small number NDEIM of 

degrees of freedom depending on the non-linear behaviour law 

and to the approximated solution An(x,t). Then, to determine 

the vectors HRNL and HSNL in (4) and (5), the NDEIM non-linear 

terms are computed and the other terms are interpolated. After 

each convergence of the iterative method, we obtain the 

approximated solution An(x,t) and the current i(t) of equations 

(1) and (2). The second method consist in recalculating of all 

functions depending to the time Si(t) in order to reduce the 

number of modes [2]. The functions Si(t) and i(t) are 

recalculated by projecting the residual function of (1) on the 

space spanned by the functions Ri(x).  

III. APPLICATION 

A 3D magnetostatic example, made of a single phase EI 

transformer at no load supplied at 50Hz with a sinusoidal 

voltage, is studied. Due to the symmetry, only one eighth of 

the transformer is modeled (Fig. 1). The non-linear magnetic 

behavior of the iron core is considered. The 3D spatial mesh is 

made of 12659 nodes and 67177 tetrahedrons. The time 

interval of simulation is fixed at [0;0.5s] in order to obtain an 

evolution of the current close to the steady state at t=0.5s. The 

time step is fixed at 0.5ms, the number of time steps is equal 

to 1000. 
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Fig. 1. Application example (a: geometry, b: non-linear curve) 

 

 The DEIM approach selects NDEIM of degrees of freedom 

used to compute the non-linear terms HRNL and HSNL from the 

solutions at several time steps. NDEIM is updated after each 

computation of a mode. Figure 2 presents the edges, which are 

related to the degrees of freedom, selected by the DEIM and 

obtained at the last iteration. These are located in the saturated 

area. Figure 3 presents the relative error of the current 

obtained from the PGD and full models versus the number of 

modes. The error decreases rapidly when the number of modes 

increases. Figure 4 presents the evolution of the current for the 

transient state obtained from the full model and the PGD 

model with seven modes. We can see a good agreement 

between the two solutions. When the PGD solution is 

approximated by seven modes, the relative error of the current 

is of about 1.7% and the speed up between the full and PGD 

modes is equal to 3. On this example, we can see that the PGD 

enables to determine quickly the global quantity with a low 

number of modes and with a computation time significantly 

reduced.   

 

Fig. 2. Edges selected by the DEIM algorithm 
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Fig. 3. Relative error of the current obtained from the PGD and full 

models versus the number of mode 
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Fig. 4. Evolution of the current obtained from the full and PGD 

models with seven modes for the transient state 
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